Table of Contents

OPAL-RT & Academia 3

Teaching Laboratories 8

Courseware

- Power Electronics 9
- Power Systems 11
- Electric Machines 13

Test Benches

- Power Electronics Test Bench 14
- HIL and RCP Simulation Systems for Electric Motors 17

Proud Users of OPAL-RT 19
Teaching the Future

REAL-TIME SIMULATION IS ENABLING THE WORLD’S VISIONARIES TO MAKE INNOVATIVE IDEAS A REALITY

We are working hard toward our vision of providing accurate and affordable simulators so that imagination will be the only real limit to complex system design. Real-time simulation is indispensable for engineer-designers. Our mission is to make it accessible to all and democratize real-time simulation.

It is no coincidence that OPAL-RT’s real-time simulation systems are currently used in nearly half of the world’s universities with an electrical engineering department. More than 400 universities benefit from the most innovative technology on the market, with easily scalable equipment that can be reused for multiple projects.

Thanks to over 20 years’ experience in HIL and our affordable and durable products, OPAL-RT is the trusted partner of professors, researchers and students around the world.
The Latest Technology to Improve Your Classes

WHY USE OPAL-RT TEACHING SOLUTIONS?

SIMILARITY TO INDUSTRIAL ENVIRONMENT
OPAL-RT’s laboratories allow students to be up to date with the most modern industrial workflows.

INTERACTIVITY AND VERSATILITY
OPAL-RT’s laboratory modules include hands-on exercises, allow students to design and test their concepts, and save time in the validation of their projects.

LOWER MAINTENANCE TIME AND COST
Universities that adopt OPAL-RT’s laboratories reduce the amount of analog lab equipment needed resulting in lower maintenance time and cost.

Inspired by the industry, HIL and RCP approaches make it possible to test, validate and reduce controller development time in a secure environment. Our tailored solutions enable you to fully teach the V-cycle principles used in the industry. Students and researchers can build a model, then validate the same model against a real system.

HIL: a physical controller is connected to a virtual plant executed on a real-time simulator, instead of to a physical plant.

RCP: a plant controller is implemented using a real-time simulator and is connected to a physical plant.
Our Bundles

Rapid Control Prototyping (RCP)
- **BDL45-100**

Hardware in the Loop (HIL)
- **Power Electronics**
 - **BDL45-411**

Tools
- **eHS | FPGA-based Power Electronics Toolbox**
- **ARTEMIS | CPU-based Electrical Toolbox**
OP4510

Equipped with the latest generation of Intel Xeon four-core processors and a powerful Xilinx Kintex™-7 FPGA, the OP4510 delivers raw simulation power for both CPU-based real-time simulation and sub-microsecond time step power electronic simulation.

The OP4510’s compact 2U chassis works equally well for desktop or rack-mounted setups, while providing up to 128 high-performance analog/digital channels with signal conditioning and four SFP-GTX optical high-speed links for hardware interfacing. The standard configuration includes 32 digital outputs, 32 digital inputs, 16 analog outputs, and 16 analog inputs.

HARDWARE

- Intel Xeon CPU - 4 cores - 3.5 GHz
- Xilinx FPGA Kintex™-7 325T
- Connectivity - Ethernet port 10/100/1000 Mbps (2x RJ45). RS232 (DB9)
- USB2.0, 5-Gbit/s high-speed fiber optic link (4x SFP)
Teaching Laboratory Kits

OUR ACADEMIC TEACHING LABORATORY KITS: TAILORED FOR TODAY’S TEACHERS’ NEEDS

Based on years of research and experience in power electronics and power systems, and through listening to users’ needs, OPAL-RT has developed Hardware-in-the-Loop (HIL) and Rapid Control Prototyping (RCP) Teaching Laboratories for universities to teach in an efficient, reliable and affordable way.

TWO TYPES OF TEACHING LABORATORY KITS

Courseware Kits

Test Benches
Teaching Laboratory Kits

COURSEWARE KITS

<table>
<thead>
<tr>
<th>PRODUCTS</th>
<th>SUBJECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>OP1130</td>
<td>Power Electronics</td>
</tr>
<tr>
<td>OP1140</td>
<td>Power Systems (PS)</td>
</tr>
<tr>
<td>OP1160</td>
<td>Electric Machines</td>
</tr>
</tbody>
</table>

TEST BENCHES

<table>
<thead>
<tr>
<th>PRODUCTS</th>
<th>SUBJECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>OP1310</td>
<td>Power Electronics</td>
</tr>
<tr>
<td>OP1320</td>
<td></td>
</tr>
<tr>
<td>OP1600</td>
<td>Simulation Systems for Electric Motors</td>
</tr>
<tr>
<td>OP1620</td>
<td></td>
</tr>
</tbody>
</table>

* All of our courseware kits come in two versions: Development and Run-Time

DEFINITION

Run-Time: Allows the running of any courseware or any model developed with the development version

Development: Allows the development, compilation and running of models

IN THE CLASSROOM

Development Simulator for the teacher

Run-Time for the students
The power electronics HIL teaching laboratory by OPAL-RT TECHNOLOGIES is an educational courseware intended to teach power electronics to university undergraduate students. Students can experiment and learn power electronics, such as converters, rectifiers, and inverters, including the control logic with HIL and RCP Tools commonly used in innovative power electronics industry research and development.

“All power electronics models used in the teaching courseware run on FPGA for very high-definition accuracy. Students can discover and learn power electronics with very high definition tools that are fast enough to visualize all phenomena that can be seen on more expensive and time-consuming analog setups.”

Pierre-Yves Robert, M.Sc.A
FPGA Specialist

MAIN BENEFITS

- Less analog lab equipment is needed, resulting lower maintenance time and cost.
- Editable and upgradable courseware to fit with specific courses or activities.
- Provides a good platform to pursue graduate research on the same setup.

COURSEWARE KIT

OPAL-RT OP4510
- 4-core CPU, Xeon E3 3.5 GHz
- Kintex-7 XILINX FPGA, 325T
- 32 Di, 32Do, 16 Ai, 16Ao

Power electronics HIL teaching laboratory
Modules 1 to 4

VISIT OUR ONLINE STORE
opal-rt.com/store
OUR POWER ELECTRONICS HIL TEACHING LABORATORY COMES WITH FOUR MODULES

Power electronics software provides real-time simulation of DC-DC, AC-DC and DC-AC converters for educational purposes in power electronics laboratories. The teaching laboratory is divided into four modules. All power electronics modules include laboratory exercises.

<table>
<thead>
<tr>
<th>MODULE 1: DC-DC Choppers</th>
<th>OBJECTIVES</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJECTIVES</td>
<td>Learn the principles of operation of choppers: boost, buck, buck-boost.</td>
</tr>
<tr>
<td></td>
<td>Understand the impact of duty cycle value on the converter in continuous conduction mode</td>
</tr>
</tbody>
</table>

Laboratory Exercises include:
- Impact of varying parameters of converter
- Effect of varying the duty cycle

<table>
<thead>
<tr>
<th>MODULE 2: AC-DC Rectifiers</th>
<th>OBJECTIVES</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJECTIVES</td>
<td>Learn the principles of operation of passive rectifiers</td>
</tr>
<tr>
<td></td>
<td>Understand single-phase and three-phase diode bridges.</td>
</tr>
</tbody>
</table>

Laboratory Exercises include:
- Impact of varying rectifier parameters
- Calculation of the form factor and the ripple factor
- Impact of activation of smoothing capacitor

<table>
<thead>
<tr>
<th>MODULE 3: DC-AC Inverters</th>
<th>OBJECTIVES</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJECTIVES</td>
<td>Learn the principles of operation of three-phase two-level inverter and PWM modulation technique</td>
</tr>
<tr>
<td></td>
<td>Study the effect of the neutral connection on waveforms of the phase voltages and line currents</td>
</tr>
<tr>
<td></td>
<td>Study the effect of filtering at the inverter output</td>
</tr>
</tbody>
</table>

Laboratory Exercises include:
- Impact of neutral connection and filtering
- Impact of varying PWM frequency and dead time

<table>
<thead>
<tr>
<th>MODULE 4: Three-Phase Three-Level NPC Inverter/Rectifier</th>
<th>OBJECTIVES</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJECTIVES</td>
<td>Learn the principles of operation of three-phase three-level NPC topology</td>
</tr>
<tr>
<td></td>
<td>Operate in inverter and rectifier modes</td>
</tr>
<tr>
<td></td>
<td>Study the effect of filtering at the converter output</td>
</tr>
</tbody>
</table>

Laboratory Exercises include:
- Design aspects: component sizing / switch control
- Variable-configuration load: AC-motor/capacitive/inductive
- Power flow/waveforms
“Learning the basis of power systems using HIL helped me be prepared for industrial challenges.”
François Berthelot
Business Unit Manager – Eastern North America
Sales Engineer

The Power System (PS) teaching laboratory is intended to perform transient stability analysis of electric grids. The basic power grid example, covered in all fundamental electric grids courses, is analyzed in time-domain and phasor-domain.
As learning outcomes, students will understand concepts of infinite source, synchronous alternator (with or without damper windings), transformers, buses, faults and power system stabilizers.

MAIN BENEFITS

- Learn power systems stability concepts and interact in real time in a safe environment.
- Interact with an intuitive and versatile graphical user interface (GUI) for all modules.
- Visualize the impact of faults and stabilize the system using power systems stabilizers.

The grid is composed of an infinite source connected to a synchronous alternator via one transformer and three buses. The alternator can be equipped with rotor damper windings. A power system stabilizer is available and can be triggered according to the tests that are running.

COURSEWARE

OPAL-RT OP4510
- 4-core CPU, Xeon E3 3.5 GHz
- Kintex-7 XILINX FPGA, 325T
- 32 Di, 32Do, 16 Ai, 16Ao
PART 1: Power Flow w/o Faults
Laboratory Exercises include:
Analyse, measure and validate the power flow of the system due to a three phase short-circuit occurring on bus 1.

PART 2: Damper Windings
Laboratory Exercises include:
Same as in module 1, plus the alternator rotor is equipped with damper windings.

PART 3: Faults & Recovery
Laboratory Exercises include:
Transient stability analysis of the system due to a three phase short-circuit occurring on bus 3.

MODULE 1: Phasor-domain mode
MODULE 2: Time-domain mode
MODULE 3: Modes comparison

OBJECTIVES
• Analyze transient stability of power systems in time-domain and phasor-domain.
• Visualize the power flow of the system.
• Use the intuitive Graphical User Interface (GUI) to apply faults on buses and observe the impacts on key signals.
• Activate the alternator rotor’s dampers and understand their effect.
• Start the power system stabilizer to recover from faults.
This courseware helps to master synchronous and asynchronous machines, from parameter identification to full operation in generator and motor modes. - Danielle Nasrallah, P.Eng, Ph.D, Technical Lead in Advanced Control and Electric Drives

The electric machines teaching laboratory constitutes a fundamental learning tool to thoroughly understand synchronous and asynchronous machines.

Students are in-the-loop, interacting with virtual machines and doing experiments as they would with physical test benches. As a result, they will fully grasp steady-state model parameter identification, synchronous machine motor operations and asynchronous machine speed control.

MAIN BENEFITS

- An interactive user interface brings the students into the loop and allows them to perform step-by-step experiments.
- Avoid costly damage or significant impact that could be caused by errors, such as overspeeding.
- Protection is implemented and allows students to reset the experiment, making it possible to recover from mistakes.

COURSEWARE KIT

COURSEWARE

Electric machines teaching laboratory
10 Modules

OPAL-RT OP4510

- 4-core CPU, Xeon E3 3.5 GHz
- Kintex-7 XILINX FPGA, 325T
- 32 Di, 32Do, 16 Ai, 16Ao

VISIT OUR ONLINE STORE opal-rt.com/store
SYNCHRONOUS MACHINE

OBJECTIVES

- Learn the principles of operation of synchronous machines.
- Identify steady-state model parameters.
- Understand dynamics, stability and power flow control.

MODULE 1: Parameters Identification
- **Laboratory Exercises include:**
 - Experimental parameter identification for the steady state synchronous machine model.

MODULE 2: Generator Mode
- **Laboratory Exercises include:**
 - Synchronous generator feeding a variable passive load, without being connected to the grid.

MODULE 3: Generator Mode
- **Laboratory Exercises include:**
 - Synchronous generator connected to the grid; power flow analysis and stability limits.

MODULE 4: Motor Mode
- **Laboratory Exercises include:**
 - Synchronous motor coupled to a DC generator feeding a variable resistor, thus achieving variable torque on motor shaft.

MODULE 5: Faults & Recovery
- **Laboratory Exercises include:**
 - Three-phase short-circuit test and recovery of the synchronous machine voltages after clearing fault.

ASYNCHRONOUS MACHINE

OBJECTIVES

- Learn the principles of operation of asynchronous machines.
- Identify steady-state model parameters.
- Apply various procedures for speed control.

MODULE 1: Transformer & Frequency Converter
- **Laboratory Exercises include:**
 - Wound-rotor asynchronous machine operating as a phase shifter transformer and frequency converter.

MODULE 2: Parameters Identification
- **Laboratory Exercises include:**
 - Experimental parameter identification for the steady state asynchronous machine model.

MODULE 3: Speed Control
- **Laboratory Exercises include:**
 - Speed control of the asynchronous motor using variable voltage and fixed frequency.

MODULE 4: Speed Control
- **Laboratory Exercises include:**
 - Speed control of the wound-rotor asynchronous motor using variable rotor resistance.

MODULE 5: Speed Control
- **Laboratory Exercises include:**
 - Speed control of the asynchronous motor using a three-phase inverter with variable voltage and frequency.
These kits are ideal when a maximum flexibility on the topology is needed. Indeed, converters can be easily assembled (and de-assembled!) by simply swapping modules in and out of an open chassis. This allows for a high reusability of the modules. As a side benefit, such an approach also emphasizes the modular nature of numerous converter topologies.

“Accelerate your development by going into the lab early to challenge your control in a real world environment.”
Syed Qaseem Ali, Ph.D
Team Leader - Transmission, Distribution and Distributed Energy Resources
Application expertise and Electrical Simulation division (AXES)
OUR MULTI-PURPOSE TEST BENCH SUPPORTS BOTH HIL SIMULATION AND LOW-VOLTAGE EXPERIMENTATION WITH EASY-TO-USE RECONFIGURABLE HARDWARE

Users can use all six half-bridges to implement back-to-back converters, such as grid-tied var-speed drives, HVDC systems, etc. Alternately, fewer modules may be sufficient for applications such as PV inverters, battery chargers, etc.

Thanks to the complete flexibility in the connections of the modules, isolated DC/DC systems are also supported, such as DAB, resonant converters or similar topologies. Interleaved DC/DC systems are of course within reach as well.

PV INVERTER
Grid-tied central inverter for photovoltaic application

BATTERY CHARGER
Single-phase inverter with isolated DC/DC converter
This laboratory combines the best of both OPAL-RT and Festo solutions to deliver academic researchers and teachers the ideal Hardware-in-the-Loop (HIL) and Rapid Control Prototyping (RCP) simulation system to conduct experiments and teach in the fields of electrical machinery, power converters and wind energy generation.

ELECTRIC MOTOR LABORATORY CURRICULUM GOALS

The OPAL-RT system, combined with Festo hardware, enables educators to fully teach the V-cycle principles used in the industry. Students and researchers can build a model and then validate the same model against a real system.

TEST BENCH OFFER

OPAL-RT OP4510
- 4-core CPU, Xeon E3 3.5 GHz
- Kintex-7 XILInX FPGA, 325T
- 32 Di, 32Do, 16 Ai, 16Ao

OPAL-RT OP8660
HIL Controller Interface
- 16 High Current- max 15A
- 16 High Voltage Probes- max 600V

FESTO OP1620
- Four Quadrant Dynamometer 2KW- (8540)
- Induction Motor DFIG- PMSG (8505)
- IGBT Chopper/ Inverter (8857)
- Line Inductors, Resistive Load and Capacitive Load (8331, 8311, 8374)
 OUR HIL AND RCP SIMULATION SYSTEM FOR ELECTRIC MACHINES COMES IN TWO FORMATS WITH THREE MODULES EACH

OP1600

The **200 W Festo** Electromechanical Training System contains:

- Dynamometer (8960)
- Power supply (8821)
- PMSM (8245)
- DFIG, SYNC M/G, PMDC or SCIM (8231, 8241, 8213, 8221)
- 2x 6-pulse IGBT (8837)
- Capacitive Load, Resistive Load or Line Inductors (8331, 8311, 8326-A)

OP1620

The **2-kW Festo** Renewable Energy System contains:

- Dynamometer (8540)
- Power supply (8525)
- PMSM (8505)
- Sync M/G, DC or SCIM (8507, 8501, 8503)*
- 2x 6-pulse IGBT (8857)
- Capacitive Load, Resistive Load or Line Inductors (8331, 8311, 8374)

OBJECTIVES

- Cover the fundamental concepts of RCP
- Perform hands-on exercises using Festo's power electronics and motor drive didactic hardware.

MODULE 1:
OP1600- OP1620
Fundamentals of RCP and operation

Laboratory Exercises include:

- Signal conditioning for RCP
- Interface with machines
- Interface with power electronics
- Control of driving dynamometers

MODULE 2:
OP1600- OP1620
Entry level application of RCP

Laboratory Exercises include:

- PID based speed control of machines
- Operation of 2-level inverter
- Regulation of a DC bus

MODULE 3:
OP1600
Advanced application of RCP

Laboratory Exercises include:

- Active filtering
- Advanced FOC control of a DFIG

MODULE 3:
OP1620
Advanced application of RCP

Laboratory Exercises include:

- Speed control of various machines: DC, IM, PMSM, WRIM.
Test and Teach With Us

450 UNIVERSITIES AND COUNTING...
ABOUT US

Founded in 1997, OPAL-RT TECHNOLOGIES is the leading developer of open real-time digital simulators and Hardware-In-the-Loop testing equipment for electrical, electro-mechanical and power electronic systems.

OPAL-RT simulators are used by engineers and researchers at leading manufacturers, utilities, universities and research centres around the world.

OPAL-RT’s unique technological approach integrates parallel, distributed computing with commercial-off-the-shelf technologies.

The company’s core software, RT-LAB, enables users to rapidly develop models suitable for real-time simulation, while minimizing initial investment and their cost of ownership.

OPAL-RT also develops mathematical solvers and models specialized for accurate simulation of power electronic systems and electrical grids. RT-LAB and OPAL-RT solvers and models are integrated with advanced field programmable gate array (FPGA) I/O and processing boards to create complete solutions for RCP and HIL testing.

DISCOUNT

Please contact your representative/reseller for details and academic discount.

OPAL-RT CORPORATE HEADQUARTERS
1751 Richardson, Suite 2525 | Montréal, Québec, Canada | H3K 1G6
Tel: 514-935-2323 | Toll free: 1-877-935-2323 | Fax: 514-935-4994

U.S.A.
OPAL-RT Corporation
2532 Harte Dr
Brighton, MI 48114, USA
Phone: 734-418-2961
Toll free: 1-877-935-2323
Fax: 1-866-462-5120

EUROPE
OPAL-RT Europe
196 Rue Houdan
92330 Sceaux
France
Tel: +33 1 75 60 24 89

GERMANY
OPAL-RT Germany GmbH
Bucher Straße 100
90408 Nürnberg
Germany
Tel: +49 (0) 911 38 44 52 02

INTELLIGENT TRANSPORTATION SYSTEMS
OPAL-RT Intelligent Transportation Systems
10 Vivier Merle boulevard
Lyon, France, 69393
Tel: +33 67 60 80 36 08

INDIA
OPAL-RT Technologies
India Pvt. Ltd.
648/A-4/5, 2nd Floor, OM Chambers,
100 Foot Road
Indiranagar 1st Stage
Bangalore, Karnataka 560038, India
Tel: 080-25200305
Fax: 080-25200105

WWW.OPAL-RT.COM