

HIL-Grid Model on Opal-RT for testing future Grid Control Centers

Eric Glende

Agenda

- Introduction
- Dynamic Grid Control Center
- HIL Grid Model
- Communication
- Conclusion

Introduction §

RUHR-UNIVERSITÄT BOCHUM

Source: TU Ilmenau

ີ **SIEMENS**

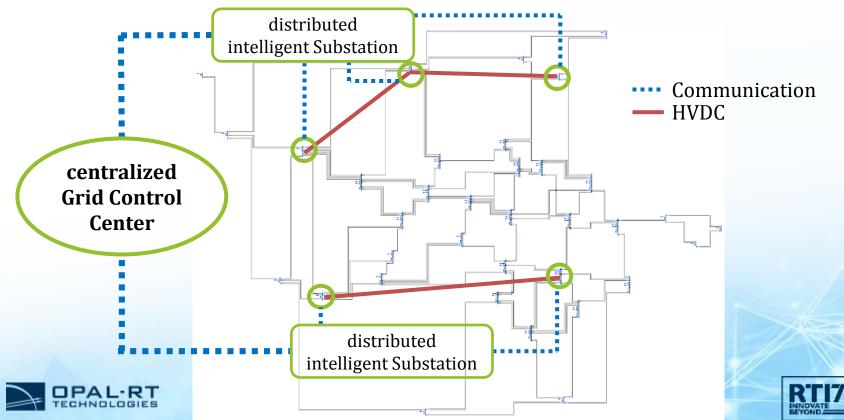
LENA 🜌 Fraunhofer IFF

High-Performant Assets

- FACTS elements
 - power electronic based DGs
 - HVDC systems

- integrative and flexible control algorithms
- high level monitoring
- decentralized control

Dynamic Grid Control Center (DGCC)

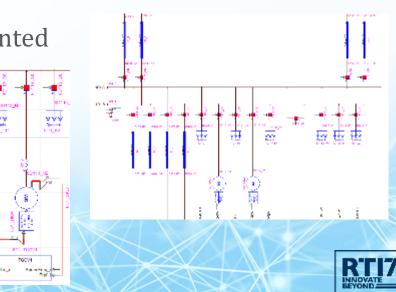


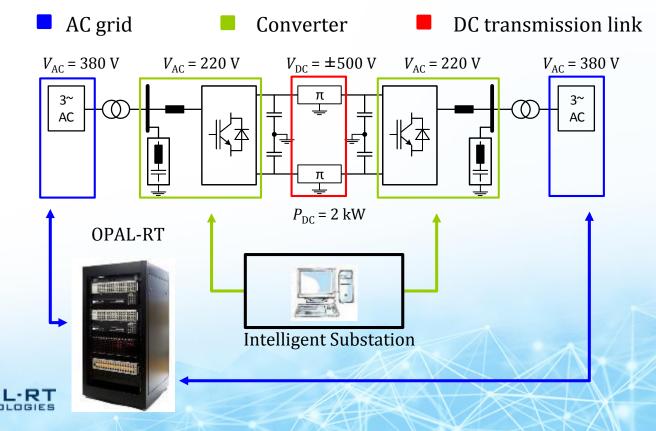
Source: Siemens

Dynamic Grid Control Center

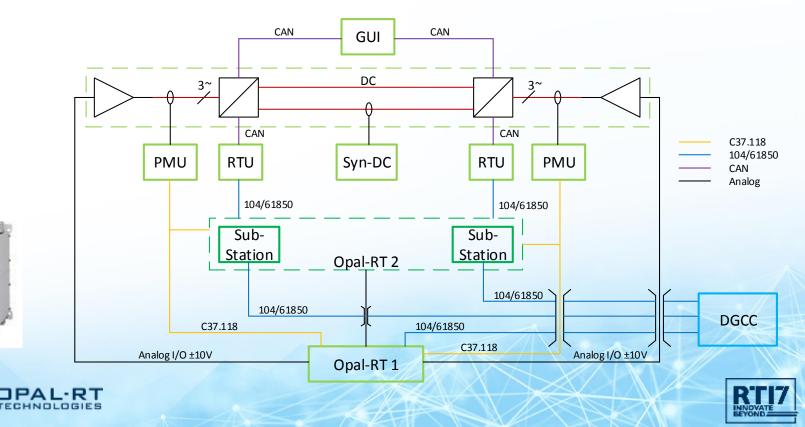
Improvements of DGCC

- dynamic observability
 → identification of dynamic reserves
- permanent corrective and preventive control measures
 → better system stability
- use of precise and synchronous measurements
 → PMU, SynDC, RTU
- consideration of modern communication interfaces
 → IEC 61850, C37.118
- forecast of dynamic behavior for several congestions
- Hierarchy Priority Control Schemes (HPCS)




HIL Grid Model - Hypersim Model

- representation of an synthetic, continental grid with 35 substations
- 700 busses, 80 machines, 200 lines, 810 power devices (loads, DG)
- voltage level 400 kV
- different scenarios will be implemented
 - 8 GW transit from North to South
 - 3 GW offset
 - n-1 contingencies
- use of IEEE controller (TGOV, GAST, EXAC, ...)

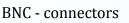

HIL Grid Model - Hardware

HIL Grid Model - Communication

Source: Siemens

HIL Grid Model - Scaling

- scaled-down
- voltage *U*: 1:10³
- current *I*: 1:10³
- apparent
 power S: 1:10⁶

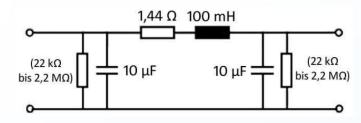

→ affordable, not too big components
→ easy to handle safety aspects
→ simple relation (kV → V)

HIL Grid Model - AC grid

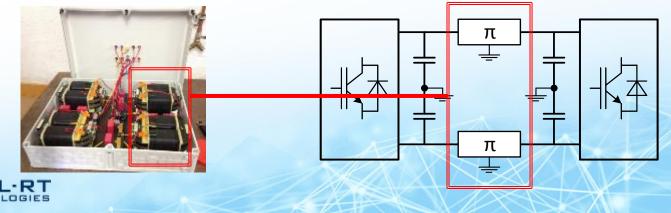
- amplifier with 3 x 2 kVA
- external signals as inputs
- U and I measurements as outputs

 $I_{3\sim}$

 $U_{3\sim}$



- analog signals from OPAL-RT
- voltage values from the simulated AC grid in real time


current measurements back to the simulator

HIL Grid Model - Scaling

- pi equivalent circuit
- *R*, *L*, *C* not scaled due to same scaling of *U* and *I*

- one element equals 100 km DC cable
- real losses, transients and dynamic behavior

Conclusion

- future grid model with real time software and hardware
- integration of modern HVDC technology
- use of modern measurement technology
- new communication standards in use
- Realization of the optimal and stabilized operation of the system with the use of:
 - measurements

- control strategies
- ICT forecasts

THANK YOU

Bundesministerium für Wirtschaft und Energie

Eric Glende Otto-von-Guericke-University Magdeburg eric.glende@ovgu.de

Special thanks to my team:

Prof.Dr.-Ing.habil. Martin Wolter, Jun.-Prof.Dr.-Ing. Ines Hauer, Iryna Chychykina, Przemyslaw Trojan, Marc Gebhardt, Stephan Balischewski, Xudan Liu and all cooperation partners

TECHNOLOGIES Fraunhofer SIEMENS RUHR-UNIVERSITÄT BOCHUM

TECHNISCHE UNIVERSITÄT