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Abstract—Two methods to partition and parallelize the 
simulation of large-scale shipboard power systems on multicore 
computes are demonstrated.  The first method is node tearing, 
and it is used for offline simulation.  The second is the state-
space nodal method, and it is used for real-time simulation.  
Both methods are benchmarked against MATLAB/Simulink 
2012b for speed and accuracy  The simulation model is a 
notional shipboard power system having characteristics of AC-
radial, 450 V, 60 Hz, three-phase, delta-ungrounded power 
system.  The parallel simulation results show speedups in excess 
of one order of magnitude and general agreement in accuracy. 

I. INTRODUCTION 

Experience [1] in simulation shows that the run time of 
large-scale shipboard power system simulations are too time 
consuming to be useful in early-stage design trades.  These 
lengthy run times limit the rate at which case studies can be 
run and consume significant research resources. 

The Center for Electromechanics (CEM) at the University 
of Texas at Austin (UT) and Opal-RT Technologies, Inc. are 
developing partitioning methods to parallelize the simulation 
of large power system models on multicore processors.  
Proper exploitation of multicore technology, as such, requires 
the re-design of existing simulation methods to embrace 
parallelism.  This paper demonstrates two simulation methods 
to parallelize power system simulations on shared-memory 
multicore processors.  The first method is developed by CEM, 
and is implemented in its solver known as CEMSolver [2, 3].  
The second method is called the State-Space Solver,  
developed by Opal-RT Technologies, and is implemented in 
the ARTEMiS solver suite [4, 5].  

II. SHIPBOARD POWER SYSTEM  MODEL 

The shipboard power system model used in this work is 
shown in Figure 7.  This model has characteristics of existing 
Navy shipboard power systems, but does not represent any 
particular system.  The information to build this model was 
taken from [6-18], and was used to build a computer model in 
MATLAB/Simulink 2012b [19] and SimPowerSystems.  

The model represents the electric distribution (ship 
service) side of an electromechanical shipboard, and it is not 
related to an integrated power system or all-electric ship [20].  

The power apparatus (i.e., equipment) appearing in Figure 7 
was modeled as follows.  The generators were modeled as 
three-phase voltage sources (450 V, 60 Hz) behind sub-
transient impedances [13, 14, 16, 18].  Cables were modeled 
as ungrounded π-sections (LSTSGU three-conductor, 
shipboard power cable, 450 V, three-phase, 60 Hz [8, 9]).  The 
transformers were modeled as 25-kVA single-phase units 
(450:120 V) connected in delta on both sides [11].  The loads 
were modeled as static impedance loads with the 
consumptions tabulated in TABLE I.   The columns in 
TABLE I.  indicate the volt-ampere rating in kVA, power 
consumption in kW, reactive power draw or injection in kVar, 
the power factor (PF), and the full-load ampere (FLA) draw.  
The protective devices were modeled as time-varying 
resistors.  Each fault was modeled as three-phase breaker 
connected in an ungrounded-wye configuration to produce a-
b-c faults.  The breakers close-in and begin their opening 
actions at the indicated times; however, the current in each 
phase is not interrupted until the next available current zero-
crossing in each phase. 

III. MULTICORE PARTITIONING METHODS 

The model in Figure 7 presents a large number of nodes, 
power apparatus, and equation count (885 independent state-
variables, and 1,188 inductors and capacitors in total).  The 
two partitioning demonstrate herein will show that the 
executing time of this model can be accelerated on two 
different targets: a Windows desktop and a Linux-based 
multicore machine.  A high-level summary of these two 
methods follows. 

A. Node Tearing (offline) 

The first partitioning method is node tearing [2, 3], and it 
is used to accelerate (offline) simulations using an every-day 
Windows-based multicore computer.  This is accomplished by, 
first, partitioning the power system model and, then, 
parallelizing its solution. 

Consider the arbitrary three-phase bus shown in Figure 1.  
This bus represents an arbitrary three-phase node in the 
shipboard power system model shown in Figure 7.  
(Identification of boundary three-phase nodes can be achieved 
using graph theory [21].)  Assuming it is desirable to create 
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p=3 partitions (or subsystems) at this three-phase node, 
insertion of unknown-valued current sources at this boundary 
results in the in-line current sources shown in Figure 2.  From 
circuit theory, it is possible to tear each current source as 
shown in Figure 3, which results in a partitioned network with 
p=3 subsystems.  Tearing current sources as such results in a 
set of doubly-bordered block-diagonal matrix equations for 
the power system network.  These types of equations can be 
solved with “fork/join” algorithms [22, 23] on a multicore 
computer, which results in pronounced speedups in large 
models. 

The mathematics behind this tearing principle can be 
found in [24, 25], which is rooted in diakoptics [26, 27].  
Readers may notice, from Figure 3, that the current sinks in 
subsystem 1 can be expressed as the sum of the current 
injections in subsystems 2 and 3.  This dependency must be 
observed during software implementation. 

TABLE I.  LOAD POWER RATINGS 

L01 333.33    300.00    145.30    0.90   428.18        

L02 6.60       6.60       -         1.00   8.48           

L03 6.60       6.60       -         1.00   8.48           

L04 11.77      10.00      6.20       0.85   15.11         

L05 35.29      30.00      18.59     0.85   45.33         

L06 35.29      30.00      18.59     0.85   45.33         

L07 38.11      36.20      11.90     0.95   48.95         

L08 38.11      36.20      11.90     0.95   48.95         

L09 38.11      36.20      11.90     0.95   48.95         

L10 70.00      42.00      56.00     0.60   89.92         

L11 190.53    181.00    59.49     0.95   244.73        

L12 315.79    300.00    98.61     0.95   405.64        

L13 6.60       6.60       -         1.00   8.48           

M01 4.55       4.55       -         1.00   5.84           

M02 4.55       4.55       -         1.00   5.84           

M03 42.87      42.87      -         1.00   55.07         

M04 52.05      52.05      -         1.00   66.85         

M05 52.05      52.05      -         1.00   66.85         

M06 52.05      52.05      -         1.00   66.85         

M07 52.05      52.05      -         0.86   66.85         

M08 86.74      86.74      -         1.00   111.42        

M09 86.74      86.74      -         1.00   111.42        

M10 134.82    134.82    -         1.00   173.18        

M11 134.82    134.82    -         1.00   173.18        

M12 134.82    134.82    -         1.00   173.18        

M13 134.82    134.82    -         1.00   173.18        

M14 134.82    134.82    -         1.00   173.18        

M15 134.82    134.82    -         1.00   173.18        

M16 207.22    207.22    -         1.00   266.18        

M17 207.22    207.22    -         1.00   266.18        

M18 207.22    207.22    -         1.00   266.18        

M19 207.22    207.22    -         1.00   266.18        

T01 75.00      70.00      26.93     0.93   89.92         

T02 75.00      70.00      26.93     0.93   89.92         

T03 75.00      70.00      26.93     0.93   89.92         

T04 75.00      70.00      26.93     0.93   89.92         

T05 75.00      70.00      26.93     0.93   89.92         

T06 75.00      70.00      26.93     0.93   89.92         

T07 75.00      70.00      26.93     0.93   89.92         

T08 75.00      70.00      26.93     0.93   89.92         

T09 75.00      70.00      26.93     0.93   89.92         

T10 75.00      70.00      26.93     0.93   89.92         

T11 75.00      70.00      26.93     0.93   89.92         

Total: 4,023      3,863      438        4,107          

*Loads of type "T" have a leading power factor  

 

Figure 1 Tearing a bus to produce three subsystems 

 

 

Figure 2 Addition of unknown-valued current sources at disconnection 
point 

 

Figure 3 Creation of three subsystems from a bus disconnection point 
creates six boundary variables instead of nine. 

 

B. State-space Nodal 

The second multicore partitioning method is the state-
space nodal (SSN) method [4, 5].  The SSN solver is also a 
node-tearing method in that system nodes are torn apart to 
produce power system partitions.  However, the SSN uses 
voltage sources at the subsystem boundaries instead of current 
sources. 

In contrast to the first node tearing method used for offline 
simulations, the SSN method is used primarily to optimize 
real-time simulations of SimPowerSystems models. In SSN, 
the user manually defines the partition boundaries using 
special blocks to represent SSN (interface or boundary) nodes. 
These nodes become nodes with implicit voltage and current 
relations at the boundary of all partitions. Within each 
partition, state-space equations are formed to solve the internal 
state of each subsystem. The simultaneous solution of all 
partitions is found using a nodal admittance method and is 
made without timestep delays in the solution. 

Figure 4 shows the fundamental principle of node tearing 
with the SSN method: the introduction of unknown-valued 
voltage sources at subsystem boundaries leads to a virtual 
decoupling of the partitions (called SSN groups), each 
described by its own set of internal state-space equations.  

The SSN code has notably been optimized for real-time 
simulation.  However, a key aspect of SSN is that there is a 
practical limit of 6 to 12 switches per SSN group.  The upper 
limit on the switch-count depends on the number of state 
equations in each partition.  The rationale of this limit stems 
from the pre-calculation of possible state-matrices in each 
partition to achieve real-time performance.  For example, a 
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partition having six switches requires the pre-calculation of, at 
most, 26=64 state matrices.  This pre-calculation is repeated 
for each partition. 

 

Figure 4 SSN principle showing the tearing of a node. 

IV. RESULTS 

The performance and accuracy of each partition method is 
discussed next.  Both partitioning methods are used on the 
same model shown in Figure 7; however, each method 
evaluates a different fault scenario for variety. 

A. Node Tearing: Performance 

The node tearing method is demonstrated by applying a 
three-phase fault (a-b-c, ungrounded) at the location indicated 
in Figure 5.  This fault closes-in at 10 ms, and initiates its 
opening at 15 ms.  The fault current, however, is not 
interrupted until the next zero-crossing of current in each 
phase. 

The hardware specifications of the computer used with the 
node tearing algorithm is listed in TABLE II.   This is a 
commercial off-the-shelf computer running Windows 7, and is 
used for every day computing. 

TABLE II.  COMPUTER USED IN NODE TEARING EVALUATION 

Brand & Model Dell Precision T7500

Memory (RAM) 12 GB

Operating System Windows 7 (64-bit) with Service Pack 1

Processor Intel Xeon E5630, 2.53 GHz, quad-core  

Figure 5 conveys the performance results of the node-
tearing algorithm.  The blue columns shows the speedup as a 

function of the number of partitions (p=2 to p=12).  The red 
column shows the run time in seconds corresponding to said 
speedups.  The green line (plotted against the right) shows the 
average frame time (µs) incurred by CEMSolver.   

Speedup 
(left axis)

Frame time 
(right axis)Runtime 

(left axis)

 

Figure 5 Performance results when using node tearing. 

Speedup [28] is the ratio of time it took MATLAB/Simulink 
2012b to complete the simulation to the time it took 
CEMSolver to complete the same simulation.  The simulation 
was run in MATLAB/Simulink using both Tustin and backward 
Euler integration, the discrete fixed-timestep solver, and a 
timestep of Δt=10 µs .  These times were measured from the 
moment each solver finished their initialization to the moment 
the simulation reaches its stop time of tstop=25 ms. The run 
times (red columns) in Figure 5 represent partitioned-
simulation time produced with CEMSolver.  The runtime of 
Simulink was 44.16s seconds when using the computer 
described in TABLE II.  

The frame time is the average time (µs) it took for 
CEMSolver to advance one time step.  This value is computed 
as dh/dk, where dh is the number of microseconds the solver 
requires (on average) to advance dk number of steps.  This 
relation is useful to determine the average time spent by 
CEMSolver in each timestep.   

Referring to the speedup in Figure 5 , the best performance 
was achieved when the system was partitioned p=4 times.  
With this number of partitions, the simulation runtime 
decreased 33.6 times (from ~44 s to ~1.3 s).  The maximum 
occurred when the number of partitions (p) matched the 
number of cores (c).  This matching result (p=c=4) is often 
observed when parallelizing simulations on quad-core 
computers, but may not be true of computes with more than 
four physical cores.   

The frame time in Figure 5 shows that the average time 
spent in each timestep in µs.  This indicates that—
theoretically—CEMSolver can be used for real time 
simulations having Δt=300 µs.  In practice, however, this 
value of Δt is unacceptable as the non-determinism of 
Windows would undoubtedly vary the solution time.  
Furthermore, the reported frame time is an average time, 
which means that during some timesteps, the solution takes 
>300 µs.  Nonetheless, it is interesting to note that parallel 
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offline simulation has the potential to achieve µs timesteps in 
large power system model simulations.  

B. Node Tearing: Accuracy 

Figure 8 and Figure 9 show voltage and current at the 
measurement location indicated in Figure 7.  The left-most 
column (in both figures) show the voltage (a) and current (c) 
produced by MATLAB/Simulink (or SimPowerSystems).  The 
center column shows the voltage (b) and current (e) produced 
by CEMSolver, which uses root matching [29-31] as the 
integration method in both figures.  The right-most columns 
show the absolute value of the instantaneous (point-by-point) 
difference in voltage and current (sub-figures (c) and current 
(f)). 

The thick bidirectional arrows connecting sub-charts (a) 
and (b) or (d) and (e) (in all figures) suggest the visual impact 
of the result.  For example, comparing Figure 8(a) and (b), 
there is a clear distinction between the results.  However, a 
comparison of Figure 8(d) and (e) suggests a perceived 
agreement in the results.  Because visual perceptions can be 
deceptive, sub-charts (c) and (f) in all figures report the actual 
differences.  The absolute value of the instantaneous 

difference is calculated as i jx x , where xi represents a data 

point (voltage or current) produced by Simulink and xj the 
corresponding data point produced by CEMSolver.   

Figure 8(a) shows an initial distortion in the voltage.  
These oscillations are numerical chatter introduced by the 
Tustin (or trapezoidal rule) integration method.  Figure 8(b) 
shows the same measurements produced in parallel with 
CEMSolver, and do not exhibit chatter.  The absolute value of 
the instantaneous difference of these two voltages are shown 
in Figure 8(c).  As seen, the difference in voltage reaches 
several hundred volts and dampens out as the simulation 
progresses.  It should be noticed that the numeric differences 
are artificial. 

Figure 8(d) and Figure 8(e) shows the current 
measurements at the same location.  The currents appear to 
agree, but Figure 8(f) reveals they do not.  The reasons for 
disagreement are the difference in integration methods, 
modeling differences, and the presence of numerical chatter.   

The simulation results in Figure 8 were produced using the 
Tustin integration method in Simulink.  A similar comparison 
using the backward Euler integration in MATLAB/Simulink is 
shown in Figure 9.  The backward Euler method was used to 
discriminate major differences when comparing the results 
produced in parallel with CEMSolver.  For example, 
comparing Figure 8(a) (Simulink, Tustin) and Figure 9 (a) 
(Simulink, backward Euler), the voltage chatter is no longer 
present.  The absence of chatter reduces the result difference 
as shown in Figure 9(c).  (The scale in Figure 9 (c) was 
adjusted with respect to Figure 8(c) for convenience).  The 
results produced by the backward Euler technique agree more 
with the results produced with CEMSolver. 

C. SSN: Performance  

Acceleration with the SSN method is demonstrated by 
applying a three-phase fault in front of L01 (300 kW).  Due to 

assumed relay coordination failures, neither the bus transfer at 
the load changed its supply to the alternate path, nor the circuit 
breaker at switchboard 1 (7th from the right) operated to isolate 
the fault.  Instead, the circuit breaker at the generator (GEN1) 
operated to disconnect GEN1 from its switchboard.  After the 
monetary fault cleared itself, the circuit breaker at GEN1 was 
re-closed.   

SSN performances were obtained by running the notional 
power system model shown in Figure 5 with p=2 and p=6 
partitions on a dual hexa-core 3.33 GHz Linux-based RT-LAB 
real-time simulator.  The number of switches was limited to 6 
per partition to warrant real-time simulation time frames. This 
was accomplished by replace the protective devices with 
series resistors in their closed (1 mΩ) and open (1 MΩ) 
positions where appropriate. 

The 885 state-variables in the notional shipboard power 
system model were evenly divided across the groups/partition.  
The partitions were executed in parallel using several cores 
with RT-LAB by specifying a timestep of Δt = 50 µs. The 
actual (measured) timestep and simulation speedups obtained 
with the SSN method are listed in TABLE III. .  It is noted 
that the SSN method could not achieve real-time performance 
for this large model.  Although it was expected to execute the 
model at a frame time of Δt=50 µs, the measured execution 
frame time was, at best 280 µs, for the p=2 case.  This result is 
similar to what was obtained in the node tearing method in 
Figure 5 (p=4).  However, the SSN method was run in real 
time using a Linux machine while the node tearing method 
was run offline using a Windows machine. 

The offline simulation produced with SimPowerSystems 
when using Tustin integration took 42 s to run the model until 
tstop=1 s.  This gives an average frame time of 2,100 µs (2.1 
ms), which was used to compute the SSN real-time 
acceleration factor listed in TABLE III. .  One must also 
consider that the SSN timing is a strict real-time result: it 
means that all time steps, even at switching instants, take the 
same time to compute. In offline simulations with 
SimPowerSystems or the node tearing method used by 
CEMSolver, this per-step calculation time (frame time) jitters 
considerably.  For this reason, neither CEMSolver nor 
SimPowerSystems can be used for real-time simulation at this 
time. 

TABLE III.  PERFORMACNE RESULTS OF THE SSN METHOD 

Number of 
partitions 

Timestep (µs) Speedup 

1 412 5.1 
2 280 7.5 
6 338 6.2 

 

D. SSN: Accuracy 

The accuracy of the SSN method is demonstrated by 
comparing the results against the results produced by 
SimPowerSystems.  Figure 6 shows the simulation results of 
SSN superimposed on to the results produced by 
SimPowerSystems. The results appear to match well except for 
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voltage chatter in the results produced by using Tustin 
integration (i.e., trapezoidal solver). This type of voltage 
chatter is typical of the trapezoidal solver (see [32] for 
example) . The art5 solver used with the SSN method is L-
stable [5], and does exhibit this problem.  Although not 
shown, the simulation results obtained in SimPowerSystems 
with the backward Euler agree well with the SSN results.   

 
Figure 6 Accuracy comparison between SimPowerSystems (Tustin 

integration) and SSN with Δt = 50µs. 

CONCLUSIONS 

Two methods to accelerate the simulation of large power 
system were presented.  The first method (node tearing) 
showed its capability to accelerate the simulation of  
MATLAB/Simulink model by ~30x.  However, this result is not 
general.  The speedup is highly dependent on model 
complexity, number of partitions, how well the partitions are 
defined, programming efficiency, and timestep size.  

The accuracy of the node tearing method agreed more with 
the backward Euler results than it did with the Tustin results.  
The disagreement with the Tustin method was due numerical 
chatter rather than physical modeling differences.  Although 
noticeable differences were shown when comparing the results 
point-by-point, the instantaneous trend of the results are in 
general agreement.  It should be noticed that the word error is 
avoided, as it is not certain which result set is correct 
(Simulink’s or CEMSolvers’).  It is likely that neither result set 
is correct as both solvers only approximate actual physical 
behavior. 

The difference in results was—mainly—due to the 
difference in integration methods.  CEMSolver uses the root-
matching technique, which produces stable and smoothly 
damped exponential responses.  Integration methods based on 
truncated Taylor-series (such as the trapezoidal rule) produce 
oscillating responses during state-variable step-changes [33].  
These differences were noticed throughout the simulation: 
before, during, and after the three-phase a-b-c fault. 

The SSN method was not was not able to simulate the 
shipboard power system model presented in this paper in real 
time.  However, the SSN method was able to partition and 
parallelize the simulations of the model.  The simulations 
were accelerated by factors of 7x when compared to offline 
simulations produced with SimPowerSystems.  Such 
reduction in run time is important to test various fault 

scenarios (fault location, type, breaker setting, etc.), which 
can add up to millions of run sets when statistical methods are 
used [34].  The accuracy of the SSN did not show visible 
discrepancies when compared to the results produced by 
SimPowerSystems.   

Both multicore methods to partition and parallelize 
simulations are suitable to accelerate fault studies in shipboard 
power systems.  The accuracy of both methods was assessed, 
and they appear to be within reasonable agreement to what is 
currently obtained with MATLAB/Simulink 2012b. 
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Figure 7 One-line diagram of notional shipboard power system (AC-radial, 450 V, 60 Hz, three-phase, delta-ungrounded) 
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Figure 8 Node tearing: result comarison against Simulink’s Tustin integration method 
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Figure 9 Node tearing: result comarison against Simulink’s backward Euler integration method 


